Math 1060: Chapter 3 Homework

Name:

Score: ____ / 154

Due June 19 at 1:00pm

1. (___ / 9 points) Give precise mathematical definitions of the following terms:

- (a) Critical path:
- (b) List processing algorithm:
- (c) Chromatic number:
- 2. (___ / 9 points) What term from class has the following definition?
 - (a) ______: An algorithm that is fast to carry out but doesn't necessarily give an optimal solution to an optimization problem.
 - (b) ______: An assignment of labels to the vertices of a graph such that vertices joined by an edge get different labels.
 - (c) ______: The study of an algorithm from the point of view of how well it performs on the hardest problems it may be used on.
- 3. (___ / 3 points) The following graph cannot be an order-requirement digraph because (choose one):
 - (a) No vertex has four edges that enter a particular vertex.
- T_2 T_4 T_4 T_5
- (b) All tasks require the same amount of time to complete.
- (c) It has a directed circuit.
- 4. ($__$ / 3 points) Which of the following statements about the accompanying digraph is true?
 - (a) This graph cannot be an order-requirement digraph because it has no (directed) edges.

(b) This graph can be the order-requirement digraph of a scheduling problem.

(c) This graph cannot be an order-requirement digraph because all tasks have the same time length.

5. (___ / 10 points) You and your two housemates are planning a party this Friday night. Eight guests are expected, and you plan to serve a homemade dinner. List the tasks involved in throwing such a party, and the types of processors used. Can any of the tasks be done simultaneously?

6. (___ / 15 points) Consider the following digraph.

(a) (___ / 5 points) Schedule the jobs appearing to the right on one processor using the list processing algorithm. Use the ordering $T_1, T_2, T_3, T_4, T_5, T_6$.

(b) (____ / 10 points) Schedule the same tasks with the same digraph and ordering using two processors instead of one.

7. (___ / 15 points) Answer the following questions about this order-requirement digraph.

(a) (___ / 4 points) What are the lengths of critical paths and which tasks are on critical paths?

(b) (___ / 4 points) Which task(s), taken one at a time, would not alter the length if the task were to increase by 1 time unit?

(c) ($_$ / 7 points) With two processors, can this task be scheduled to complete by time 20? If so, what list L would allow you to apply the list processing algorithm and finish by time twenty on two processors?

8.	(/ 25 points) At a large toy store, scooters arrive unassemust be performed:	embled in be	oxes.	To assemble a scooter, the following tasks
	Task 1 Remove parts from box.	Task 6 At	ttach l	bell to handlebars.
	Task 2 Attach wheels to footboard.	Task 7 At	ttach o	decals.
	Task 3 Attach vertical housing.Task 4 Attach handlebars to vertical housing.	Task 8 At	ttach l	kickstand.
	Task 5 Put on reflector tape.	Task 9 At	ttach s	safety instructions to handlebars.
	(a) (/ 5 points) Give reasonable time estimates for digraph.	these tasks	and o	construct a reasonable order-requirement
	(b) (/ 8 points) Schedule this job on two processors (the job take? Be sure to draw the completed schedule.		sing th	ne critical path algorithm. How long does
	(c) (/ 8 points) Schedule this job on three processors the job take? Be sure to draw the completed schedule.		sing tl	he critical path algorithm. How long does

(d) ($__$ / 4 points) The cost of labor is \$10/hour. Is it more cost-effective to use two or three processors?
9. (/ 15 points)
(a) (/ 5 points) Draw a connected graph with 12 vertices and 11 edges whose vertices can be colored by tw colors. What kind of graph is this?
(b) (/ 5 points) Can all trees be colored by two colors? Come up with a reason why, or an example of one that cannot be.
(c) (/ 5 points) Add a single edge to your graph from part (a) in such a way that the resulting graph can n longer be colored with two colors.

10. ($__$ / 24 points) For each of the following graphs, find its chromatic number.

11. (___ / 26 points) The faculty-student governing council at All State College has nine standing committees (such as Curriculum, Academic Standards, Campus Life) that are designated A, B, \ldots, I for convenience. The following table shows which committees have no member in common.

	A	В	c	D	E	F	G	H	1
A	y .	Х		х		X	х		X
В	Х			- 100	Х	X		Х	X
c				X		Х	X.	Х	Х
D	Х		X			X		X	
E		Х		V			х	х	Х
F	Х	,X	X	Х		-			
G	X	, ,	X		Х			Х	
Н	F at	Х	X	Х	Х		X		X
1	Х	X	X	-	X		-	х	

(a) ($\underline{\hspace{1cm}}$ / 8 points) Draw an appropriate graph to represent the information on the table.

(b) (____ / 9 points) What is the minimum number of time slots in which all the committee meetings can be scheduled?

(c) (___ / 9 points) How many rooms are needed during each time slot to accommodate the committees that are scheduled to meet at that time slot?